Buscar este blog

martes, 13 de abril de 2010

Ciclo de Krebs


Ciclo de Krebs
El ciclo de Krebs (conocido también como ciclo de los ácidos tricarboxílicos o ciclo del ácido cítrico) es un ciclo metabólico de importancia fundamental en todas las células que utilizan oxígeno durante el proceso de respiración celular. En estos organismos aeróbicos, el ciclo de Krebs es el anillo de conjunción de las rutas metabólicas responsables de la degradación y desasimilación de los carbohidratos, las grasas y las proteínas en anhídrido carbónico y agua, con la formación de energía química.
 
El ciclo de Krebs es una ruta metabólica anfibólica, ya que participa tanto en procesos catabólicos como anabólicos. Este ciclo proporciona muchos precursores para la producción de algunos aminoácidos, como por ejemplo el cetoglutarato y el oxalacetato, así como otras moléculas fundamentales para la célula.
El ciclo toma su nombre en honor del científico anglo-alemán Hans Adolf Krebs, que propuso en 1937 los elementos clave de la ruta metabólica. Por este descubrimiento recibió en 1953 el Premio Nobel de Medicina.
En este ciclo se llevan a cabo las siguientes reacciones:

  • Deshidratación

  • Hidratación

  • Oxidación

  • Descarboxilación

  • Descarboxilación oxidativa

  • Hidrólisis

  • Oxidación

  • Adición (H2O)

  • Oxidación

  • Condensación
El paso final es la oxidación del ciclo de Krebs, produciendo un acetil-CoA y un CO2.

El acetil-CoA reacciona con una molécula de oxaloacetato (4 carbonos) para formar citrato (6 carbonos), mediante una reacción de condensación.

A través de una serie de reacciones, el citrato se convierte de nuevo en oxaloacetato.

Durante estas reacciones, se substraen 2 átomos de carbono del citrato (6C) para dar oxalacetato (4C); dichos átomos de carbono se liberan en forma de CO2

El ciclo consume netamente 1 acetil-CoA y produce 2 CO2. También consume 3 NAD+ y 1 FAD, produciendo 3 NADH + 3 H+ y 1 FADH2.

El rendimiento de un ciclo es (por cada molécula de piruvato): 1 GTP, 3 NADH, 1 FADH2, 2CO2.

Cada NADH, cuando se oxide en la cadena respiratoria, originará 2,5 moléculas de ATP (3 x 2,5 = 7,5), mientras que el FADH2 dará lugar a 1,5 ATP. Por tanto, 7,5 + 1,5 + 1 GTP = 10 ATP por cada acetil-CoA que ingresa en el ciclo de Krebs.

Cada molécula de glucosa produce (vía glucólisis) dos moléculas de piruvato, que a su vez producen dos acetil-CoA, por lo que por cada molécula de glucosa en el ciclo de Krebs se produce: 4CO2, 2 GTP, 6 NADH + 6H + , 2 FADH2; total 36 ATP.


Regulación
Muchas de las enzimas del ciclo de Krebs son reguladas por retroalimentación negativa, por unión alostérica del ATP, que es un producto de la vía y un indicador del nivel energético de la célula. Entre estas enzimas, se incluye el complejo de la piruvato deshidrogenasa que sintetiza el acetil-CoA necesario para la primera reacción del ciclo a partir de piruvato, procedente de la glucólisis o del catabolismo de aminoácidos. También las enzimas citrato sintasa, isocitrato deshidrogenasa y α-cetoglutarato deshidrogenasa, que catalizan las tres primeras reacciones del ciclo de Krebs, son inhibidas por altas concentraciones de ATP. Esta regulación frena este ciclo degradativo cuando el nivel energético de la célula es bueno.



Algunas enzimas son también reguladas negativamente cuando el nivel de poder reductor de la célula es elevado. El mecanismo que se realiza es una inhibición competitiva por producto (por NADH) de las enzimas que emplean NAD+ como sustrato. Así se regulan, entre otros, los complejos piruvato deshidrogenasa y citrato sintasa.



Principales vías que convergen en el ciclo de Krebs
La mayoría de las vías catabólicas convergen en el ciclo de Krebs, como muestra el diagrama. Las reacciones que forman intermediarios del ciclo se conocen como reacciones anapleróticas.



El ciclo de Krebs constituye la segunda etapa del catabolismo de carbohidratos. La glucólisis rompe la glucosa (6 carbonos) generando dos moléculas de piruvato (3 carbonos). En eucariotas, el piruvato se desplaza al interior de la mitocondria (gracias a un transportador específico de membrana interna). En la matriz mitocondrial, produce acetil-CoA que entra en el ciclo de Krebs.



En el catabolismo de proteínas, los enlaces peptídicos de las proteínas son degradados por acción de enzimas proteasas en el tubo digestivo liberando sus constituyentes aminoacídicos. Estos aminoácidos penetran en las células, donde pueden ser empleados para la síntesis de proteínas o ser degradados para producir energía en el ciclo de Krebs. Para su entrada al ciclo deben eliminarse sus grupos amino (terminales y laterales) por acción de enzimas aminotransferasas y desaminasas, principalmente.



En el catabolismo de lípidos, los triglicéridos son hidrolizados liberando ácidos grasos y glicerol. En el hígado, el glicerol puede ser convertido en glucosa vía dihidroxiacetona fosfato y gliceraldehído-3-fosfato, por la gluconeogénesis (ruta anabólica). En muy diversos tejidos, especialmente en músculo cardíaco, los ácidos grasos son degradados en la matriz mitocondrial mediante sucesivos ciclos de beta oxidación que liberan unidades de acetil-CoA, que pueden incorporarse al ciclo de Krebs. En ocasiones, el ciclo de Krebs puede rendir propionil-CoA (3 carbonos), que puede emplearse para la síntesis de glucosa en la gluconeogénesis hepática.



El ciclo de Krebs siempre es seguido por la fosforilación oxidativa. Este proceso extrae la energía en forma de electrones de alto potencial de las moléculas (Cofactores reducidos) que son el NADH y FADH2, regenerando NAD+ y FAD, gracias a lo cual el ciclo de Krebs puede continuar. Los electrones son transferidos a moléculas de O2, rindiendo H2O. Pero esta transferencia se realiza a través de una cadena transportadora de electrones capaz de aprovechar la energía potencial de los electrones para bombear protones al espacio intermembrana de la mitocondria. Esto genera un gradiente electroquímico de H+, que es utilizado para la síntesis de ATP mediante la enzima ATP sintetasa. De este modo, el ciclo de Krebs no utiliza directamente O2, pero lo requiere al estar acoplado a la fosforilación oxidativa.



Por cada molécula de glucosa, la energía obtenida mediante el metabolismo oxidativo, es decir, glucólisis seguida del ciclo de Krebs, equivale a 30/32 moléculas de ATP dependiendo del tipo de lanzadera para introducir el poder reductor dentro de la mitocondria, si es la lanzadera de malato-aspartato son 32 y si es la de glicerol 3 fosfato, son 30.

Por: Germán Cruz Ramírez

BIBLIOGRAFIA:
- Nutrición y alimentación "José Maraix Verdú, editorial oceano
- http://www.ciclodekrebs.com/



No hay comentarios:

Publicar un comentario